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Optimal Linear Regulators with
Exponentially Time-Weighted

Quadratic Performance Indices
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Introduction

NE of the performance indices used in the classical design

of single-input and single-output linear time-invariant
systems is the integral of exponentially time-weighted squared
error. This type of performance indices heavily penalizes
long-duration errors and hence tends to give designs that yield
well-damped responses. The use of exponentially time-
weighted performance indices has been in later years revived
by Kalman et al.,* Tyler,? and Sage® in the design of optimal
linear regulators. The solution of this optimal linear regula-
tor problem for finite terminal time is straightforward?.? and
differs only slightly from that of the conventional problem.
The solution for this particular problem for infinite terminal
time, however, is not as trivial and is not available in litera-
ture. It is the intent of this Note to present a solution for the
linear regulator problem optimal for exponentially time-
weighted quadratic performance indices. The method of solu-
tion utilizes the concept of cost equivalence, to be defined in
the next section, in conjunction with the theory of optimal
linear regulator.

Concept of Cost Equivalence

For the sake of convenience, a linear time-invariant asymp-
totically stable system ¢ = Fy and its associated quadratic
cost functional

J = fowy'Pydt

will be denoted by [F,P]. The representation [Fy,Pi] is
said to be cost-equivalent to [Fa,Py] if 1 and Fs are stability
matrices, P; and P, are nonnegative symmetric matrices and
J; = J.. Based on this notation and definition, the following
result can be deduced immediately without proof.

Lemma: [F,e®™P] is cost equivalent to [F 4+ AIP] for
any A, if both representations possess the same initial condi-
tions, and the equivalence is one-to-one correspondent.
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It should be emphasized that, although the two representa-~
tions are cost-equivalent, they are not equivalent in the sense
of Lyapunov,* and their trajectories are related by the non-
singular transformation eMI. Since the optimal linear regula-
tor problem is concerned primarily with the minimization of
the cost of a system rather than the shape of the trajectory of
the system, the concept of cost equivalence will be useful in
the development of the main result of the Note.

Main Result

Consider a linear time-invariant controllable system

& = Ax + Bu, z(0) = x, (1)
and a quadratic cost functional
J = fo " 29t(a'Qx + wRu)dt @)

where A4, B, @, and R are constant matrices of compatible di-
mensions and appropriate definiteness, and ¢ is an arbitrary
positive constant. The problem of interest is to find an
optimal control law such that (2) is minimized subjeet to (1).
Because the integrand of (2) is unbounded when the terminal
time approaches infinity, the method of derivation of the
conventional optimal linear regulator cannot be directly em-
ployed without some prior mathematical modifications.
With the use of the concept of cost equivalence, it is possible
to state and prove the following result.

Theorem: The optimal control law which minimizes (2)
subject to (1) is given by

u*¥ = —R7B'Sx 3)

where the symmetric matrix S is the unique positive definite
solution of the algebraic matrix Riccati equation

A'S + 84 4+ 20S — SBR'B'S+ @ =0 4)

Moreover, the real parts of all the eigenvalues of the resulting
closed-loop system (A — BR™'B’S) are less than —o.

Proof: Tt is well known that if (A4,B) is a controllable
pair, (A + ol,B) is also controllable for any ¢. From a re-
sult by Wonham,® there always exists a feedback control law
of the form

u = —Kz 5)

such that (A + oI — BK) is a stability matrix, that is, the
real parts of all the eigenvalues of (4 — BK) are less than
—o. Applying (5) to (1) and (2) gives [A — BK,e*'(Q +
K’RK)], which, in view of the previous lemma, is equivalent
to {4 + ol — BK,Q 4 K’RK] in which

2= (A 40l — BK)z,2(0) = x (6)
J = j; " 2@ + K'RK)xdt )

Using now the conventional theory of optimal linear regula-
tor, the control law that minimizes (7) subject to (6) is given
by

4= —R™B'S ®)

where the symmetric S is given by (4). Furthermore, the
matrix (A 4+ ¢ — BR™'B’S) is asymptotically stable, and,
consequently, the real parts of all the eigenvalues of the
closed-loop system are less than —o.

It should be noted that the optimal control law of (8) is a
linear feedback of the vector z instead of the state vector z.
To complete the proof of the theorem, it is required to show
that both (3) and (8) result in identical costs. Applying (3)
to (1) and (2) leads to [A — BR™1B’S,e?'(Q 4+ SBR~'B'S)]
which, with the use of the previous lemma, is equivalent to
[A 4+ oI — BR'B’S,Q + SBR~'B’S]. Indeed, the latter
is the optimum representation of (6) and (7), and hence (3) is
the optimal control law minimizing (2) subject to (1).
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It is of interest to note that an efficient algorithm for the
numerical solution of (4) can be found in Ref. 6.

Linear Time-Varying Systems

The theory outlined in the previous sections is equally ap-
plicable to cases when the system (1) is time-varying and the
terminal time in (2) is finite; that is, when (1) and (2) have
the form .

=AMz + Bld)u (9)

J = fto ¥ 2ot(2'Qe + w' R (10)

Utilizing the arguments given previously with a slight modi-
fication, it is readily shown that the optimal control minimiz-
ing (10) subject to (9) is given by

u* = —RIB'S()x 11)

where the symmetric matrix S(¢) satisfies the matrix Riceati
equation

S = —[A®) + oISt — SHIAQ + ol] +
SHBORB®S® — Q,Sty) =0 (12)

On the other hand, using the theory of optimal linear regula-
tor, the optimal control is

2 = —e 2 R-1B'H)S(t)z (13)

where the symmetric matrix S(f) satisfies the following matrix
Riccati equation:

8@ = ~A'®8®) — SWAQ + e—%ts‘(t)B(t)R"lB'(t)g(p
— e ”Q

S¢) =0 (14)

It can be demonstrated that (13) and (14) are identical to (11)
and (12) by employing -the nonsingular transformation S(f)
= ¢29t8(f). This identification also demonstrates the time
invariance of the optimal control law as given by (3) and (4)
for the time-invariant system when the terminal time
approaches infinity.

An Example
Consider a third-order unstable system given by

1 2 -30 01 0 2
A=|—-4 5 —06|,B=|00 10 0
78  —09 00 0 100

Taking the matrix B = I and the matrix @ arbitrarily to be
0.1I with ¢ = 0, the eigenvalues of the resulting closed-loop
system are —30.63 and —4.58 & 52.33. Using the same @
and R as before but with ¢ = 3, the eigenvalues of the result-
ing closed-loop system become —33.70 and —9.90 £ ;52.30.
It can be seen that for a given set of weighting matrices @ and
R, the design based on the exponentially time-weighted per-
formance index does give a fast and well-damped system
response. However, as pointed out in Ref. 1, although the
use of exponentially time-weighted performance indices pro-
vides a satisfactory means of shifting the dominant eigenvalue
of the system, the remaining modes of the system may be quite
oscillatory. It appears that the applicability of the ex-
ponentially time-weighted performance indices is greatly en-
hanced when they are used in conjunction with a design
technique such as the root-square locus.”
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Upwash Interference on an Oscillating
Wing in Slotted-Wall Wind Tunnels
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Introduction

HE wall interference on a stationary wing in subsonie

flow in a wind tunnel with ventilated walls has been
studied extensively (see a summary in Ref. 1). However,
the calculation of the interference on an oscillating airfoil
has been limited because of the complexity of the problem.
Experimental evidence indicates? that the interference effects
on an oscillating airfoil may be large in slotted wall tunnels;
however, caleulations of this interference are limited to cer-
tain special cases.?

This paper presents the upwash interference on an oscillat-
ing wing in a slotted-wall tunnel for all frequencies. The
formulation is based on the small-wing theory with a relation-
ship between the steady acceleration and unsteady velocity
potentials. An analytical solution is given for the upwash
interference in a circular and in a rectangular tunnel with
solid side walls.

Analysis

If the flow is oscillating with the angular frequency w due
to the harmonic motion of a wing, the perturbation potential
may be written as ¢ = ¢i(z,y,2)e™*". The linearized equation
for ¢ of a thin wing becomes
, 0%k | O%r | O Odby,

Set T oyt T o~ ZRM L KM e =0 (1)

B8

where £ = wL/U is the reduced frequency and 82 = 1 — M2
U and M are freestream velocity and Mach number, respec-
tively. All lengths are nondimensionalized by a tunnel
characteristic length L.

» From the definition of the acceleration potential

Vi = (0¢w/0x + 1ker) 2
the inverse relation for ¢ can be obtained by integration
with respect to z since ¢ vanishes far upstreamat z = —

b= [\7 e pulo — gyt ®)
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